Logistic Normal Priors for Unsupervised Probabilistic Grammar Induction

نویسندگان

  • Shay B. Cohen
  • Kevin Gimpel
  • Noah A. Smith
چکیده

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilistic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal distribution as a prior over the grammar parameters. We derive a variational EM algorithm for that model, and then experiment with the task of unsupervised grammar induction for natural language dependency parsing. We show that our model achieves superior results over previous models that use different priors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar Induction

We present a family of priors over probabilistic grammar weights, called the shared logistic normal distribution. This family extends the partitioned logistic normal distribution, enabling factored covariance between the probabilities of different derivation events in the probabilistic grammar, providing a new way to encode prior knowledge about an unknown grammar. We describe a variational EM ...

متن کامل

The Shared Logistic Normal Distribution for Grammar Induction

We present a shared logistic normal distribution as a Bayesian prior over probabilistic grammar weights. This approach generalizes the similar use of logistic normal distributions [3], enabling soft parameter tying during inference across different multinomials comprising the probabilistic grammar. We show that this model outperforms previous approaches on an unsupervised dependency grammar ind...

متن کامل

Computational Learning of Probabilistic Grammars in the Unsupervised Setting

With the rising amount of available multilingual text data, computational linguistics faces an opportunity and a challenge. This text can enrich the domains of NLP applications and improve their performance. Traditional supervised learning for this kind of data would require annotation of part of this text for induction of natural language structure. For these large amounts of rich text, such a...

متن کامل

Covariance in Unsupervised Learning of Probabilistic Grammars

Probabilistic grammars offer great flexibility in modeling discrete sequential data like natural language text. Their symbolic component is amenable to inspection by humans, while their probabilistic component helps resolve ambiguity. They also permit the use of well-understood, generalpurpose learning algorithms. There has been an increased interest in using probabilistic grammars in the Bayes...

متن کامل

Unsupervised Bayesian Parameter Estimation for Dependency Parsing

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilitsic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal prior as a prior over the grammar parameters. We derive a variational EM algorithm for that model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008